46 research outputs found

    Provision of frequency stability of an islanded microgrid using a novel virtual inertia control and a fractional order cascade controller

    Get PDF
    Nowadays, the renewable energy sources in microgrids (MGs) have high participation to supply the consumer’s demand. In such MGs, the problems such as the system frequency stability, inertia, and damping reduction are threatened. To overcome this challenge, employing the virtual inertia control (VIC) concept in the MG structure could be considered as a viable solution to improve the system frequency response. Hence, this work proposes a novel modeling for VIC in an islanded MG that provides simultaneous emulation of the primary frequency control, virtual inertia, and damping. To show the efficiency of the proposed technique, a comparison is made between the dynamic performance of the proposed VIC and conventional VIC under different scenarios. The results indicate that the proposed VIC presents superior frequency performance in comparison with conventional VIC. In addition to VIC modeling, a new cascade controller based on three-degrees of freedom and fractional-order controllers (FOCs) is proposed as an MG secondary controller. The effectiveness of the proposed controller is compared to tilt-integral-derivative and FO proportional-integral-derivative controllers. The Squirrel search algorithm is utilized to obtain the optimal coefficients of the controllers. The results demonstrate that the proposed controller improves the MG frequency performance over other controllers. Eventually, the sensitivity analysis is performed to investigate the robustness of the proposed controller in the face of the variations of the parameters

    Intelligent Power Control of Inverter Air Conditioners in Power Systems: A Brain Emotional Learning-Based Approach

    Get PDF

    Proportional Hysteresis Band Control for DC Voltage Stability of Three-Phase Single-Stage PV Systems

    Get PDF
    Ensuring the stability of DC-link voltage in grid-connected photovoltaic (PV) systems plays a critical role in their reliable and continuous operation. DC voltage fluctuation and, in the worst case, DC voltage collapse will dramatically hamper real and reactive power delivery to the grid. This is more the case in single-stage inverters with no DC-DC boost stage, and the DC voltage has a varying nature. This paper proposes a new control approach for ensuring DC-link voltage stability in single-stage PV systems. The proposed control strategy is based on an adaptive hysteresis band controller (HBC), supplementing the conventional control blocks. This strategy offers the capability to prevent fast discharge of DC-link capacitor and keeps it within acceptable limits by quickly modifying phase shift applied to inverter PWM through quick calculations. Results show that the approach greatly improves PV system performance, in various operating modes. The proposed control scheme is implemented in the real-time simulator, OPAL-RT, OP5600 to verify its applicability and effectiveness in real time
    corecore